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Supersonic flow past cones of general cross-section 

By P. M. STOCKERT AND F. E. MAUGER 
Armament Research and Development Establishment, War Office, Sevenoaks, Kent 

(Received 1 December 1961) 

The differential equations representing the supersonic flow of a gas past a cone 
of any cross-section are integrated numerically, using a method similar to those 
used for bluff-body problems. A stream function is used as one of the independent 
variables and this is particularly suitable for determining the singular ‘ vortical 
layer ’. The method is here applied to the cases of elliptic cones a t  zero yaw and 
circular cones at incidence. The results are compared with experiment and with 
other numerical solutions. 

1. Introduction 
In  the past few years several authors-Mangler & Evans (1957), Van Dyke & 

Gordon (1959), Vaglio-Laurin & Ferri (1958) and Zlotnik & Newman (1957)- 
have obtained satisfactory numerical solutions of the problem of hypersonic flow 
past a bluff-nosed body. In  every case the method adopted has been what may 
be called an inverse marching process. The direct problem is: given the body shape, 
to determine the pressure on the body, the flow field around it and the shape of the 
shock wave it produces. The inverse method of solution is based on the use of the 
shock wave as starting line. A shock wave shape is chosen and all quantities are 
then known at the shock; it is then possible to find the whole flow field and the 
body shape by integrating the flow equations step-by-step away from the shock. 
The resulting body shape is determined and compared with the required body 
shape. The shock shape is then modified in such a way as to produce a body shape 
which approximates more closely to the one that is required and the integration 
is repeated. This process is continued until the required degree of accuracy is 
obtained. Satisfactory convergence has been obtained for sufficiently smooth 
bodies; for instance a spherical nosed body has been obtained to a high degree of 
accuracy by Van Dyke & Gordon (1959). Solutions obtained by a step-by-step 
method of the kind used here have been ignored until recently partly because the 
stability and convergence of the numerical scheme was thought to be unsatis- 
factory and partly because the idea of obtaining the solution of an elliptic equation 
from data specified on an open boundary was itself suspect. However, the solu- 
tions obtained agree well with experimental results and with one another and the 
method appears to be satisfactory. 

The object of this paper is to apply the inverse marching procedure to a different 
class of problems, namely, the class which arises in ‘conical’ or ‘similarity’ 
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solutions and which gives rise to an elliptic differential equation involving two 
independent variables. The case of the supersonic flow of an ideal gas past a cone 
of general cross-section, which may be at incidence, is an example, the flow 
produced by a uniformly expanding cylinder of general section is another from 
the field of unsteady flow, and similar examples arise elsewhere. In  fact, problems 
of this nature will arise in many situations which lead to a hyperbolic differential 
equation in three independent variables. In  the more familar theory of charac- 
teristics for hyperbolic problems in two variables the solution at  singular points 
leads to an ordinary differential equation, e.g. the Taylor-Maccoll solution for 
flow past an unyawed cone. At the singular points of a three-variable problem the 
solution of a second-order elliptic equation of the type considered here is often 
required. 

One further aspect of step-by-step solutions must be mentioned. Most authors 
make use of a stream function as a variable in their computations. Van Dyke uses 
i t  as variable in the bluff-body problem, and Briggs (1959) uses a similar method 

,I - \ 
, I  

FIGURE 1. The co-ordinate system. 

for the problem of flow past an elliptic cone; they determine its value in terms of 
space variables, which are used as independent variables. Mangler & Evans (1957) 
and Vaglio-Laurin & Ferri (1958) make use of the stream function in their 
independent variables; the flow is then determined in a non-physical plane, and 
the geometry of the physical plane is determined by quadrature. The latter 
approach will be adopted here for reasons which are given in 0 2. 

The specific problem treated here is that of the inviscid, steady, supersonic 
flow of an ideal gas past a coneof arbitrary section, but the methodis applicable to 
a wider class of problems. 

Spherical polar co-ordinates r ,  8, q5 are chosen with r = 0 at  the cone apex, the 
axis 8 = 0 coincident with the cone axis, and the meridian plane q5 = 0 chosen in 
some convenient manner. Let po, po  and uo be, respectively, the pressure, density 
and velocity of the undisturbed stream. Denote by uuo, vuo and wuo the com- 
ponents of fluid velocity in the directions r ,  8 and q5 increasing respectively, and by 
pou ip  and ppo the pressure and density. The co-ordinates are illustrated, for the 
particular case of a circular cone at  incidence, in figure I ,  where the plane Q, = 0 
has been chosen as the plane of symmetry on the windward side of the body. The 
flows considered are ‘similar’ or ‘conical’ because of the absence of a length 
scale. Thus, along any ray, Q, = const., 8 = const., all flow quantities are inde- 
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pendent of r .  Derivatives with respect to r vanish from the equations of flow, 
which are 

a a 
ae 24 
- (pv sin 0) + - (pw) = - 2up sin 0, 

as w as 
a0 smOa$ 

v-+-7-- = 0, 

(1.4) 

where (1.6) is a modified form of (1.4) and where S is the entropy and a the 
dimensionless speed of sound. The problem is to be solved in a (8, $)-plane, say 
r = 1, working from the trace of the shock wave to the trace of the body surface. 

2. The vortical singularity 
Ferri (1951) observed that the body surface must be a surface of constant 

entropy and that because of this there must be a region of high vorticity near the 
body surface, the vortical layer. From equation (1.5) it is clear that entropy is 
conserved along a family of curves in the (0, $)-plane; these curves are the inter- 
sections of the stream surfaces of constant entropy with the unit sphere and will 
be referred to as ‘streamlines’. The streamlines originate at the shock and for 
physical reasons cannot cross?; the streamlines terminate in one or more singular 
points in the flow at which the entropy is multivalued, the vortical singularities. 
Equation (1.5) shows that at such a point v = w = 0. Thus these singularities 
represent the final direction into which the particles moving along these stream- 
lines are deflected. The vortical singularities may be on the body or in the flow. 
If there are several on the body, the entropy is constant between these singu- 
larities, but may be different in different sections. In  many cases the position of 
the vortical singularities will be determined by symmetry conditions. Thus the 
elliptic cone at zero incidence has a vortical singularity on the body$ at  either end 
of the minor axis. The circular cone at a small incidence will have one at  $ = 7r 

on the body. With increasing incidence the singularity will move into the field. 
The end-points of the major axis of the elliptic cone at zero incidence and the 
point q4 = 0 on the body of the circular cone at  incidence behave like ‘stagnation 
points’ with v = w = 0; u + 0. 

t Except possibly at  singularities with no physical significance in cases which involve 

$ It seems possible that the singularity might occur off the body in extreme cases. 
25 Fluid Mech. 13 

additional shock waves. 



386 P. M .  Stocker and F. E. Mauger 

It is clear that in the case of a body which differs only slightly from a circular 
cone at zero incidence the vortical layer must be very thin and that the circular 
cone represents a limit which is approached non-uniformly. It will appear later 
that a very thin layer of high vorticity occurs in all cases. 

The importance of the entropy in the vortical layer necessitates the use of a 
variable which varies significantly across the vortical layer, and the geometrical 
variables 0 and q5 are clearly not suitable for this purpose. What is needed is a 
stream function, but the conical equations (1.1) to (1.6) are fundamentally three- 
dimensional equations and hence a single stream function does not exist. It is 
possible, however, to introduce two stream functions (Krzywoblocki 1958). Let 
+ and 0- be such that 

0-- = -pvsinO, (2.1) 
all. 
a+ 
a@ 
ae 0-- = pw. 

Consider the use of q5 and 9 as independent variables. Then 

and 

Equation (1.5) becomes 

( 2 . 2 )  

(2.4) 

and therefore the (streamlines’ are lines $ = const. The variable + is therefore 
a suitable choice as one of the independent variables. Moreover, if @ is chosen as 
independent variable, the region of solution is automatically limited to the fluid 
and there is no necessity to consider the flow at ‘imaginary’ points inside the 
body, a situation which arises if geometrical co-ordinates are used. 

The choice of the second independent variable must now be considered. The 
angular variable q5 is not satisfactory because for the unyawed circular cone the 
lines q5 = const. coincide with the family + = const. Again, 0 is not satisfactory 
because it is insensitive in the vortical layer for near-circular cones. On inspection 
it is found that 0- (or rather a variable closely related to it) is suitable. 

From equations (2.1) and ( 2 . 2 )  it  follows that 

which can be simplified by use of equation (1.4) to obtain 

2u sin 0 

It is convenient to define q such that 

7 = log{F(llr)/0-19 
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where F($)  is a function to be chosen later. Then 

2u sin 8 
(3.8) 

The shock wave is chosen to be the curve 7 = 0 and thus g = F ( $ )  at the shock. 
If the function F($)  is chosen arbitrarily then $is defined at  the shock wave apart 
from an unimportant constant. If q+ is chosen arbitrarily at  the shock then F($)  
can be determined from equations (2.1) and (2 .2 ) .  Also, at  the vortical singularity, 
v = w = 0,  whereas (a$/aq5), and (i3$/a8)4 are non-zero, and hence equations (2.1) 
and (2.2) imply that g = 0 at the vortical singularity. Thus 7 is infinite there. 

The numerical procedure is to start from the line 7 = 0 and to integrate the 
equations one step so as to find the solution along the line 7 = h = const.; another 
integration gives the solution on 7 = 2h, and so on. In  this way the solution is 
computed along ‘ streamlines ’ which approach the vortical singularity, but do 
not attain it in a finite number of steps. This is desirable because the body shape is 
defined by the dividing ‘streamline ’ (but see 3 5), and it is convenient to be able 
to determine the shape of this without the complication which would arise if 
other ‘streamlines ’ had reached the singularity. 

(3.6) 

3.1. Boundary conditions 

At any point on the shock surface let Q be the angle between a normal to the sur- 
face and the plane $ = const. through the point, considered positive if the normal 
lies on the side of greater q5. Let a be the angle between the normal and the free- 
stream direction, and let B be the angle of incidence, i.e. the angle between the line 

25-2 
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8 = 0 and the free-stream direction. Then the following relations hold im- 
mediately behind the shock: 

u = -sin 8 cos q5 sine + cos 8 cos e, 

v = - p-l cos R{ (cos 8 cos q5 sin e + sin 8 cos e) cos R - sin q5 sin R sin E }  

- sin Q{(cos 8 cos qi sin E + sin 8 cos e) sin Q + sin q5 sin E cos R}, 
w = - p-l sin Q{ (cos 8 cos I# sin E + sin 8 cos e) cos R - sin 9 sin Q sin e} 

+ cos Q ((cos 8 cos 9 sine + sin 8 cos e) sin R +sin I# sine cos a}, 
2 y-1 1 cos2a 

P' 2 1 '  
p = -cos2a--- 

Y + l  Y(Y + 1)  Mi '  y-l c0s2a+  - - 
Y + l  y + l M g  

where Mo is the free-stream Mach number. 
Iff(8, I#) = 0 defines the shock surface then 

cos a = - (cos 0 cos # sine + sin 8 cos e l f& +A sin-2 81-4 
+ sin # sine cosec 8f&j" +A sin-2 81-4, 

and cos SI = for$ +A s i r 2  el-+. 

4. The numerical solution 
The equations of § 3, with boundary conditions as in 8 3.1, were integrated by 

the inverse marching technique using a Ferranti Mark 1" digital computer. The 
shock shape was represented in all cases by a Fourier cosine series in the form 

n 

1 
sin2 8 = uo + ur cos rq5. 

In  order to provide an equal interval difference scheme in $ the following method 
is adopted. Let $ = q5 at the shock wave, then because $ is continuous a t  the 
shock I?($) = (T = -(pvsin8+pwf$/fe), 

which is the required boundary condition for (T at the shock. Elsewhere, from 
equation (2.7), it  follows that 

= I?($) exp ( - 7). (4.3) 

The equations are now integrated in the following manner. All quantities which 
occur in equations (3.1) to (3.7) are known at the shock wave, q = 0. The $-deri- 
vatives of these quantities are evaluated using a nine-point difference formula, i.e. 

(A$) (wa$)* = A,(% - 2-1) + A2k2 - 2-2) + A,(% - x-3) + A4(x4 - Z-aL 

A,  = 0.8, A2 = - 0.2, A, = 0.03809524, A4 = - 0.00357143, 

use being made of symmetries at  the end-points. The values of the q-derivatives 
can now be found by solving the set of simultaneous equations (3.1) to  (3.7). 

Values of all quantities on the line q = h are now given by 

x(h) = 40)  + (ax/aq)o h, 

and (T is found from (4.3). The whole process is then repeated to advance the 
integration one step further, and so on. 
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5. Results for particular examples 
It has long been thought that the step-by-step solution of elliptic equations is 

unsatisfactory because the solution is necessarily unstable. No analytical treat- 
ment of stability or convergence has been attempted. A degree of instability, 
ranging from slight to catastrophic has been observed in the various cases (0 6). 
The object of the present section is to present the computed results, to discuss 
their physical significance, and to compare them with experimental results and 
with other similar work. 

FIGURE 2. A section of a yawed circular cone showing the lines 
of constant entropy or ‘streamlines’. 

The cases computed were as follows. 
A. Indirect cases in which the shock shape was prescribed and the body shape 

determined. 
(i) A series of cases of shocks a t  zero incidence ( E  = 0) with infinite free-stream 

Mach number (H, = 03). The Fourier series representation of the shock wave was 
used (equation (4.1)) and a, was held constant a t  a value of 0.166 whilst u2 was 
varied. This leads to a series of shocks of oval section, with approximately con- 
stant mean angle and varying eccentricity. 

(ii) Two cases of shocks of nearly elliptic section at  zero incidence. 
(a )  E = 0,  M, = 10, tanO,, = 0.5, tan@- = 0.4; 
(b)  B = 0 ,  M, = 6, tanO,,, = 0.962, tan@,,, = 0.577. 
B. Direct cases in which the body shape was prescribed, and the shock shape 

(i) A body of elliptic section at zero incidence? 

(ii) Two cases of a circular cone at incidence. 
The cone having a semi-angle of 20°, in each case M, = 3.53, and (a) E = 5 O ,  

determined by iteration. 

B = 0,  M, = 6, tanomax = 0.400, tanO,i, = 0.226, 

(b) E = loo. 

t This body is only a close approximation to an ellipse, see Ferri (1959). 
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The cases A (i) were the first to be computed; a typical case, a2 = - 0.03, is 
shown in figure 3. It can be seen that, not only do the ‘streamlines’ converge on 
the vortical singularity, but they appear to touch at  the body surface before they 
reach the singularity. That is the body appears to be an envelope of ‘streamlines ’; 
a ‘streamline ’, after entering the vortical layer, rapidly approaches the body 

$In 
FIGURE 3. Conical shock at  infinite Mach number. 

surface. This behaviour was observed in all cases, not merely in those slightly 
different from the unyawed cone, and a mathematical analysis shows that the 
distance between ‘ streamlines ’ in the layer decreases exponentially with distance 
along the lines. Because of this ‘envelope ’-like behaviour it was unnecessary to 
determine the shape of the ‘dividing streamline’, the one which actually defines 
the body, in order to determine the body shape. Moreover, the pressure varies 
little across the vortical layer and ‘streamline ’ points in the ($, r)-plane which 
correspond t o  the same point in the physical plane yield the same pressure. 
However, the quantities u, v, w and p vary rapidly across the layer, and the 
profile cannot be found from the computed solution, although they could possibly 
be determined by fitting a solution for the vortical layer. 

The case A (i) 
A typical case a, = 0.166, a2 = - 0.03 is shown in figure 3 which shows the shock 
and body shapes and the ‘streamlines’. In  this, and in other cases with a high 
Mach number, the graph is plotted on a rectangular grid so that the region 
between the shock and body may be magnified. Figure 4 shows lines of constant 
density. A plot of isobars was not made because, around q5 = 45”, they lie too 
closely parallel to the ‘streamline’ to prepare an accurate figure. The pressure 
around the body is shown in figure 5 .  
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In  cases where a2 < - 0.055 no satisfactory body shape wa,s obtained. For such 
cases the shock has become concave near q5 = 0. Even a slight concavity in the 
shock produced a violent concavity in the body near q5 = 0 and the solution 

Q 

5 
4 

a Density values on body 

I I I I I 

#In 
FIGURE 4. Isopycnics for a case of a conical shock a t  infinite Mach number. 

5 

#In 
FIGURE 5. Body pressures for a case of an elliptic conical shock at infinite Mach number. 

became so inaccurate that it was impossible to say whether such shocks yielded 
a concave body or whether, in fact, they could not be produced by any body. 

A case a, = 0.155, u2 = - 0.06, a4 = 0.011 was computed. This has the same 
axes as a case a. = 0-166, a2 = -0.06, but a different shape. It is not concave 
near # = 0 and produced a satisfactory body shape. Thus it becomes clear that 
small changes in shock shape can produce appreciable differences in body shape. 
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The cases A (ii) 
These cases were carried out in order to compare the present theory with two other 
numerical techniques. Mauger (1960) has computed the solution to problem 
A (ii) (a )  by using a method similar to that which Garabedian (1957) used for the 
bluff-body problem. This method is known to be stable, but is extremely long, 
and the time taken would be excessive if a direct problem were to be solved. The 
method is based on the use of characteristics in a complex plane and in the form 

tan 0 

FIGURE 6. Comparison of two methods for a conical shock of elliptic cross-section at  
Mach number 10. - - - , Body derived by Mauger. 

200 40' 60' 8 0 O  
0.2 

4 
FIGURE 7. Pressure coefficient on the body given by an elliptic conical shock 

at  M = 10. I_ , Present method; 0, Mauger's method. 
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used by Mauger difficulty is experienced near the body, because the lines on which 
the solution is computed cross the vortical layer, whereas in the method described 
here they lie in it. Satisfactory agreement between the two methods has been 

0.2 0.4 0.6 

tan 0 

-J 
1 *o 

FIGURE 8. Comparison of two methods for a conical shock of elliptic cross-section 
( M  = 6). - - -, Body derived by Briggs. 

0.3 
0 10 20 30 40 50 60 70 80 90 

@ (degrees) 

FIGURE 9. Body pressures for the case of a conical shock of elliptic cross-section (M = 6). 
--- , Pressures derived by Briggs; -, pressures derived by present method. 

obtained. The resulting body shapes are shown in figure 6, and the body pressure 
distributions in figure 7. For better comparison of the two methods figure 6 has 
been drawn with a false origin. 

Case A (ii) ( b )  was computed for comparison with the results of Briggs (1959) 
who also used a marching technique, but who computes the solution using physical 
space variables as independent variables. In  its present form his method uses an 
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elliptic co-ordinate system and only elliptic shocks can be considered. A compari- 
son of the bodies resulting from the two methods is shown in figure 8, and the 
pressures are compared in figure 9. 

0.5 

04 

Q 

3 
+a 

0.3 

0.2 
0.1 0.2 0.3 0.4 0.5 

$1.. 
FIGURE 10. The flow over a conical body of elliptic cross-section ( M  = 6).  

$1.. 
FIGURE 11. Body pressures for the case of EL conical body with elliptic cross-section 

( M  = 6).  A, Experimental pressures (Ferri). 

The case B (i) 

This was a direct problem in that the shock shape corresponding to a given body 
shape was found. The body chosen was one of approximately elliptic section 
which had been studied experimentally by Ferri (1959). Initially a shock shape 
was guessed and a solution computed using large steps to save time. The shock was 
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then modified empirically to obtain a closer approximation to the required shape 
and when close agreement was reached a smaller step size was used. In  all, five 
cases were computed, the values of the shock wave coefficients being tabulated 

tan 0 

FIGURE 12. Flow over a yawed circular cone. Semi-apex angle of cone = 20". 
Mach number = 3.53. Angle of yaw = 5". 

Shock 

I I I 
0-6 0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 

tan 0 

Mach number = 3.53. Angle of yaw = 10". 
FIGURE 13. Flow over a yawed circular cone. Semi-apex angle of cone = 20". 

Case a 0  a2 a 4  

1 0.125 - 0.050 0.006 0 
2 0.125 - 0.042 0.006 0 
3 0.127 - 0.037 0.006 - 0.003 
4 0.139 - 0.039 0.006 - 0.001 
5 0.1284 - 0.0379 0.006 - 0.0007 

TABLE 1 

in table 1. The 'streamlines' are shown together with the required 'envelope' in 
figure 10; the comparison between the experimental and theoretical pressure 
distributions is shown in figure 11. The agreement is satisfactory, particularly if 
allowance is made for a boundary layer near the vortical singularity. 
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The cases B (ii) 
The figures 12 and 13 show the shock shapes and 'streamline' shapes for a cone 
of 20" semi-angle at M = 3.53 for the cases of 5' and 10" incidence respectively. 
The isobars for 10" incidence are shown in figure 14 and the isopycnics in figure 15. 
Figure 16 shows the pressure distribution on the body and experimental points 

I I I 
0 6  0.5 0.4 0.3 0.2 0 1  0 0.1 0.2 0.3 0.4 0.5 0 6  

tan 0 

FIGURE 14. Isobars for a yawed circular cone (intervals in the pressure coeficient C& 
Semi-apex angle of cone = 20". Mach number = 3.53. Angle of yaw = 10". 

tan 0 

FIGURE 15. Isopycnics for a yawed circular cone (intervals of p/p,). Semi-apex angle of 
cone = 20". Mach number = 3-53. Angle of yaw = 10'. 

from Holt & Blackie (1956) are included for comparison. The agreement is 
good on the windward but not so satisfactory on the leeward side near the vortical 
singularity. 

The computation of the 10' case brought to light a property of the computed 
solution which became much more marked as the incidence increased and which 
made it impossible to obtain a satisfactory solution for cases of higher incidence. 
In  the initial solution of these problems a Fourier series terminating at  a5 was used. 
In  the 10" case it was found that, after suitably choosing the coefficients, this led 
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4 (degrees) 

FIGURE 16. Body pressures on yawed circular cones. Semi-apex angle = 20", 
M = 3-53. 0, x , Experimental pressures (Holt & Blackie). 

1 

FIGURE 17. A case of a yawed circular cone illustrating the leeward bump and the last 
computed points. Semi-apex angle of cone = 20". Machnumber = 3-53. Angleof yaw = 15". 

to a body which was very nearly circular for the range q5 = 0 to q5 = 150"' but 
which then produced a small hump on the circular cone in the range #I = 150" to 
#I = 210" (figure 17). In  order to eliminate this hump it was necessary to introduce 
a corresponding 'hollow ' in the shock near #I = 1 80", though not so severe as to 
make a concave shock. It was found that this had to be done in an analytic way, 
and for this purpose the coefficients in the Fourier series for the shock profile were 
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generated by using the finite Fourier series for sinn $12, where the index n was 
chosen to match the hollow required. With a little effort satisfactory results were 
obtained for the 10O-incidence case, but the 15”-incidence case did not respond to 
this treatment and a circular body could not be obtained near the vortical 
singularity. A likely explanation for this failure of the method is this: the shock 
belongs to a cone at  a higher incidence where the vortical singularity lies outside 
the body on $ = n; the accuracy of the method (which in this area uses a technique 
of marching along the body) is not sufficient to establish a ‘stagnation’ point on 
the body at  $ = n- (which would close it) and then to continue towards the vortical 
singularity outside the body. 

6. Concluding remarks 

strated in two ways: 
The accuracy of the solution in any particular case is believed to be demon- 

(a )  by the accuracy of the ‘envelope ’ formed by the streamlines ; 
(b )  by the accuracy of the values for the pressure in the layer, i.e. points which 

are widely separated in the ( ~ ,  q)-plane but which yield nearly coincident points 
in the layer should have almost identical pressures. 

In  cases where the Mach number was large and the ellipticity small the accuracy 
in this sense was very high. As the Mach number decreases, or as the body becomes 
more elliptic or the incidence higher the accuracy decreased. This is clearly to be 
expected; for low supersonic Mach numbers the shock shape varies little from a 
circle and small changes at the shock will produce large changes at the body. The 
computation of anything other than extremely simple body shapes is unlikely to 
be possible. A computation was carried out for the case considered by Radha- 
krishnan (1958). This is the case of a circular shock with a stream at incidence. The 
resulting streamlines were very wild and no well-defined body shape resulted. 
It is likely that in practice a rather complicated body shape would be needed to 
produce this shock. Cases with a concave shock also led to streamline patterns 
which did not converge. 

It is not very difficult to explain why the numerical solution is unsatisfactory 
near the vortical singularity. The equations of motion may be thought of as 
having a solution which falls into three regimes. First, there is the majority of the 
field between shock and body; in this region the solution may be thought of as 
‘ non-singular ’ and computation is straightforward. When the vortical layer is 
entered the solution is still regular from the mathematical point of view but 
‘singular ’ as regards its numerical behaviour ; terms which are formerly dominant 
in the equations now balance each other identically, so that terms which formerly 
were less dominant now start to govern motion. From the computational point 
of view great care must be taken to formulate the problems in the correct way and 
terms must be grouped so as to obtain the maximum possible accuracy. As the 
vortical singularity is approached the present numerical method becomes more 
and more inadequate to cope with the associated mathematical singularity and 
the asymptotic behaviour as the singularity is approached is probably incorrect. 
This is not likely to have much effect on the pressure which tends to be remarkably 
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uniform around the vortical singularity; temperature and density (in the absence 
of diffusion effects) vary from streamline to streamline. 

The difficulty with the case at incidence is interesting. The vortical singularity 
will detach from the body with increasing incidence and the point $ = 7r on the 
body will change in character and turn into a ‘stagnation’ point. The streamline 
pattern will not be very complicated but in a large region the (v, w)-components of 
the velocity will be too small for the present method to work satisfactorily. 

Finally it should be noted that the details of the behaviour of the vortical layer 
are important for all three-dimensional problems of this type and must be 
clarified before full use can be made of three-dimensional characteristic methods 
such as that of Butler (1960). 

The authors wish to thank Miss P. L. Wright for the very considerable help she 
gave in carrying out these computations. Crown copyright reserved. Reproduced 
by permission of the Controller of H.M. Stationery Office. 
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